
Release Note

Release Date: August. 2019

Product Ver.: midas Gen 2020 (v1.1) and Design+ 2020 (v1.1)

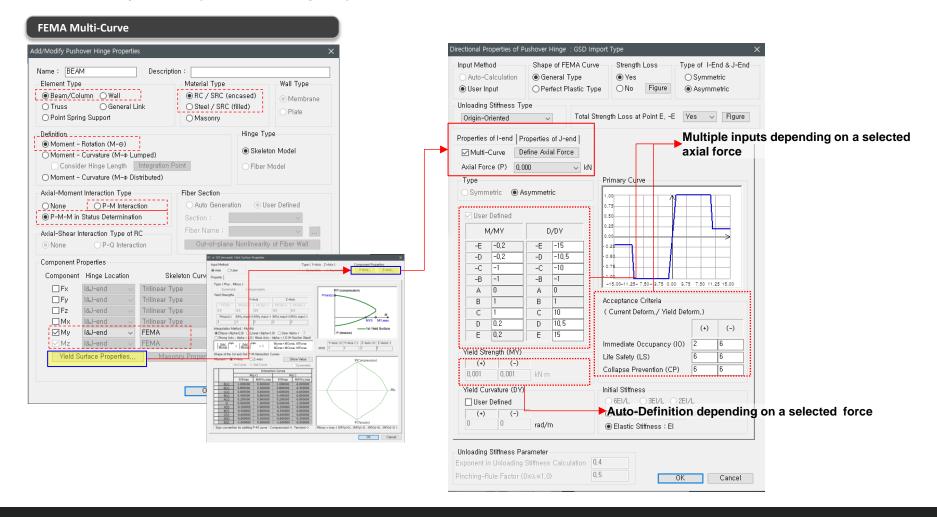
DESIGN OF General Structures

Enhancements

midas Gen

1)	側推非線性鉸可考慮軸力變化		4
2)	在版牆設計結果中新增 "Update Rebar Option" 功能		5
3)	優化RC柱設計結果報表		6
4)	新增厚度資料名稱欄位		7
5)	可定義雙線性之面彈簧支承性質		8
6)	新增顯示板元素分析結果之中心點數據		9
7)	新增節點顯示控制快捷鍵	1	0
8)	新增NTC 2018規範之Non-Dissipative Element設計功能	1	1
9)	優化NTC 2018規範之穩定係數表格	1	6
10)	新增NTC 2018規範之靜態地震力與反應譜	1	7
11)	新增EC2規範之RC設計的 "qo" 參數	1	8

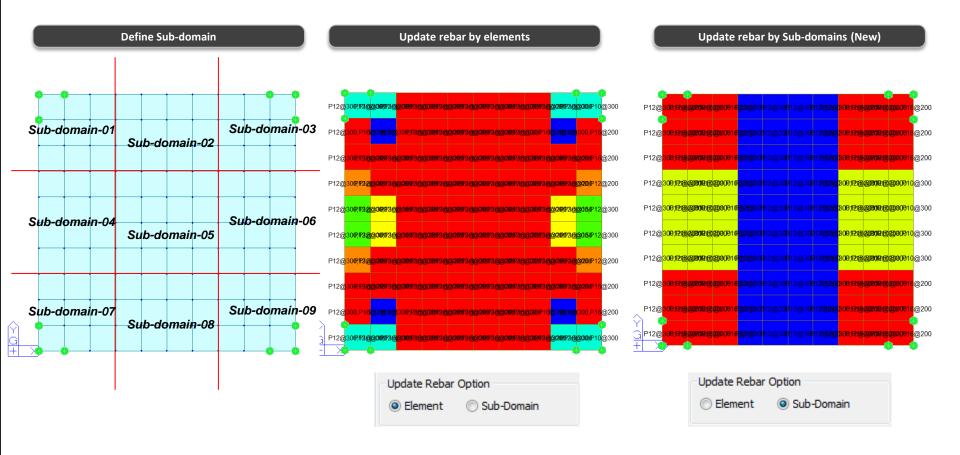
• midas Design+


1) 新增AISC規範之螺栓彎矩接合設計檢核功能 2

midas Gen

1. 側推非線性鉸可考慮軸力變化

- •可依照斷面的P-M互制關係,定義各軸力下P-M值對應的非線性鉸參數
- Pushover > Properties > Define Pushover Hinge Properties



2. 在版牆設計結果中新增 "Update Rebar Option" 功能

• 可選擇依Element或依Sub-Domain的設計結果來進行Update Rebar

Added methods to input rebar information

3. 優化RC柱設計結果報表

Printout shear design result for each direction in graphic report (RC column)

Midas Gen 2019 v2.2

5. Shear Force Capacity Check (End)

Applied Shear Force Design Shear Strength Shear Ratio Joint Shear Ratio

٧u = 198.243 kN (Load Combination: 16) = 276.331 + 842.734 = 1119.06 kN (As-H_req = 0.00053 m²/m, 2-P10 @30) φVc+φVs Vu/φVn = 0.177 < 1.000 O.K Vhj/φVnj = 0.00000 / 0.00000 = 0.000 < 1.000 O.K

6. Shear Force Capacity Check (Middle)

Applied Shear Force Design Shear Strength Shear Ratio

= 198.243 kN (Load Combination: 16) φVc+φVs = 277.275 + 210.684 = 487.959 kN (As-H_req = 0.00053 m²/m, 2-P10 @120)

Vu/φVn = 0.406 < 1.000 O.K

Midas Gen 2020 v1.1

3. Design for Shear

[END]
Applied Shear Force (V_Ed) Shear Ratio (V_Ed/V_Rdc) Shear Ratio (V_Ed/V_Rds) Shear Ratio (V_Ed/V_Rdmax) Shear Ratio Asw-H req
- •

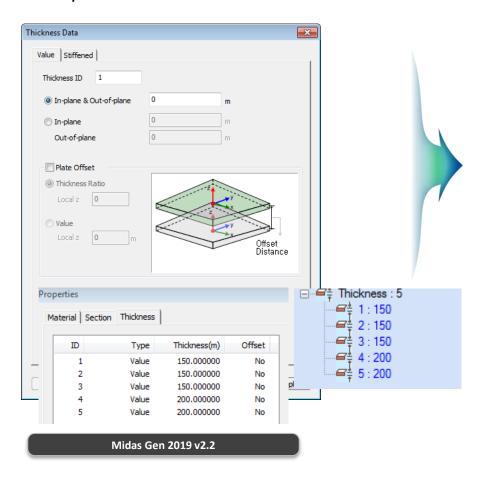
[MIDDLE]	
Shear Ratio Shear Ratio	ar Force (V_Ed) (V_Ed/V_Rdc) (V_Ed/V_Rds) (V_Ed/V_Rdmax)

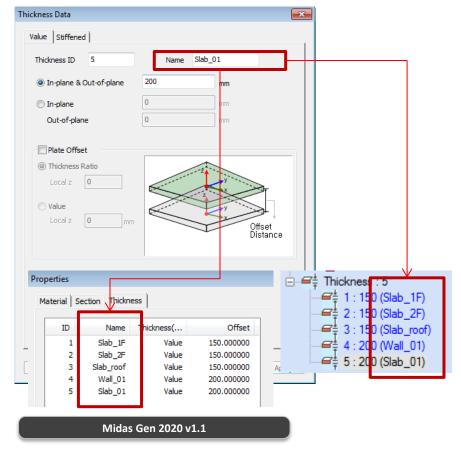
[JOINT]
Vjhd / Vjs
Joint Ratio
Ash int

y: 3 (I)	z: 9(I)
39639.6 N	35434.7 N
39639.6 / 438445 = 0.090	35434.7 / 437307 = 0.081
39639.6 / 837475 = 0.047	35434.7 / 991141 = 0.036
39639.6 / 1716750 = 0.023	35434.7 / 1741500 = 0.020
0.090 < 1.000 O.K	0.081 < 1.000 O.K
0.00393 mm²/m, 2-P10 @40	0.00393 mm²/m, 2-P10 @40
40 (4(0)	40 (410)

	,
y: 10 (1/2)	z: 10 (1/2)
472545 N 472545 / 414399 = 1.140 472545 / 478557 = 0.987 472545 / 1716750 = 0.275 0.987 < 1.000 O.K 0.00222 mm²/m, 2-P10 @70	559460 N 559460 / 412915 = 1.355 559460 / 566366 = 0.988 559460 / 1741500 = 0.321 0.988 < 1.000 O.K 0.00222 mm²/m, 2-P10 @70
y : (I)	z : (l)
0.00000 / 0.00000 = 0.000	0.00000 / 0.00000 = 0.000

0.00000 / 0.00000 = 0.0000.00000 / 0.00000 = 0.0000.000 < 1.000 O.K 0.000 < 1.000 O.K 0.00000 mm2, Not Use 0.00000 mm2. Not Use

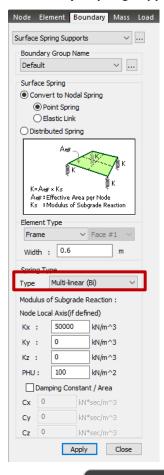


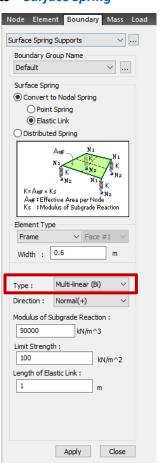


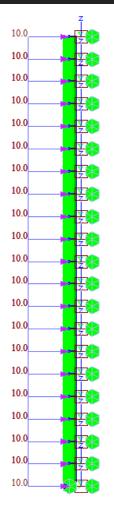
4. 新增厚度資料名稱欄位

Usage classification for the same thickness

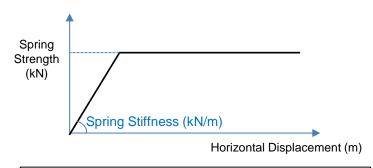
Properties > Section > Thickness






5. 可定義雙線性之面彈簧支承性質

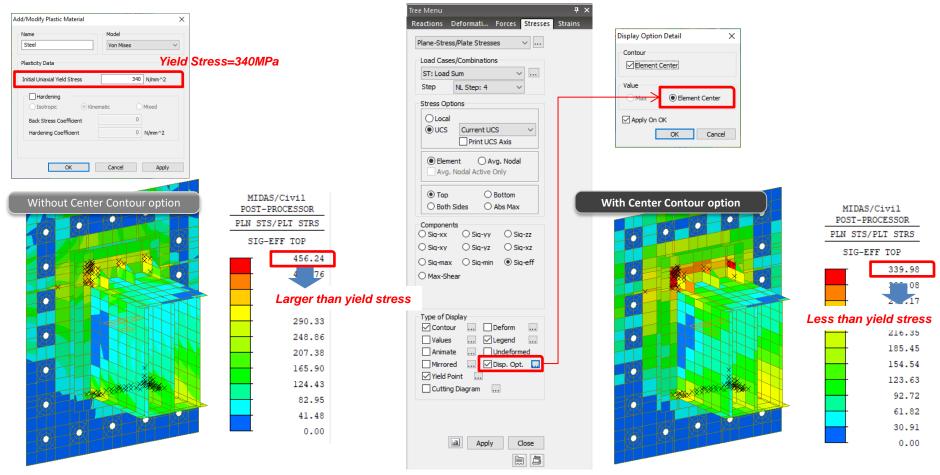
- Bilinear spring type is added in the Surface Spring Support to simulate the strength limit of the soil. The strength limit should be defined by the user.
- Both Point Spring Support and Elastic Link are supported.


■ Boundary > Spring Supports > Surface Spring

Horizontal Soil Stiffness(kN)

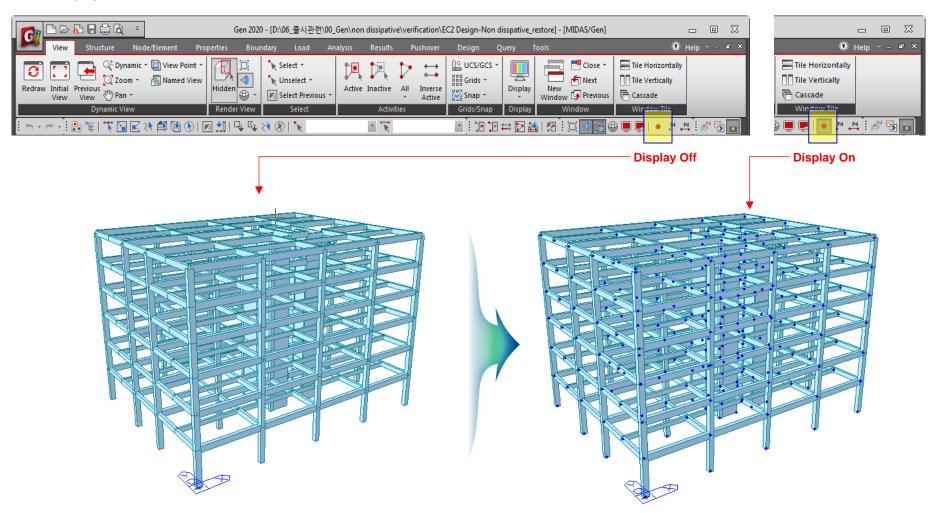
Spring Strength [kN] = Section Width [m] \times Element Length [m] \times PHU [kN/m²]

Surface Spring Support



6. 新增顯示板元素分析結果之中心點數據

- Stresses at the node are determined by the linear interpolation of Gauss points, which often leads to stress exceeding yieldstress in the material nonlinear analysis.
- Plate stress contour can now be displayed using the value at the element center instead of element nodes. The center values will not exceed the yield stress.


Results > Results > Stresses > Plane-Stress/Plate Stresses

7. 新增節點顯示控制快捷鍵

Quick display on/off for Node

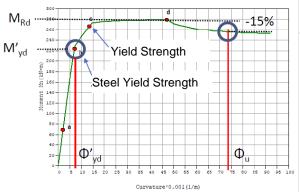
In NTC 2018

NTC18 7.2.2. CRITERI GENERALI DI PROGETTAZIONE DEI SISTEMI STRUTTURALI

COMPORTAMENTO STRUTTURALE

Le costruzioni soggette all'azione sismica, non dotate di appositi dispositivi d'isolamento e/o dissipativi, devono essere progettate in accordo con uno dei seguenti comportamenti strutturali:

a) comportamento strutturale non dissipativo,


oppur

b) comportamento strutturale dissipativo.

7.4. COSTRUZIONI DI CALCESTRUZZO

7.4.1. GENERALITÀ

Nel caso di comportamento strutturale non dissipativo, la capacità delle membrature deve essere valutata in accordo con le regole di cui al § 4.1, senza nessun requisito aggiuntivo, a condizione che in nessuna sezione si superi il momento resistente massimo in campo sostanzialmente elastico, come definito al § 4.1.2.3.4.2. Per i nodi trave-pilastro di strutture a comportamento non dissipativo si devono applicare le regole di progetto relative alla CD "B" contenute nel § 7.4.4.3. Per le strutture prefabbricate a comportamento non dissipativo si devono applicare anche le regole generali contenute nel § 7.4.5.

Non-Dissipative Element Design (NDED)

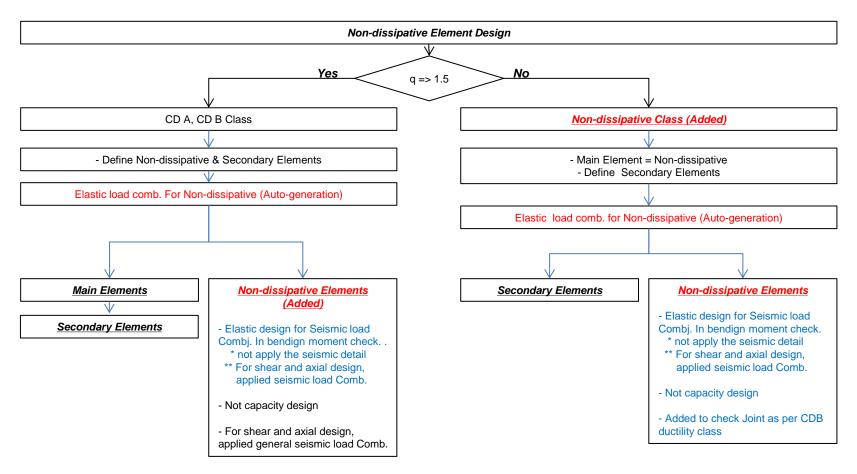
$$M'_{vd} > M_{Ed}$$

M'vd: Bending resistance in elastic status

M_{ed}: Design bending moment by elastic load combinations

NTC18 7.2.2.

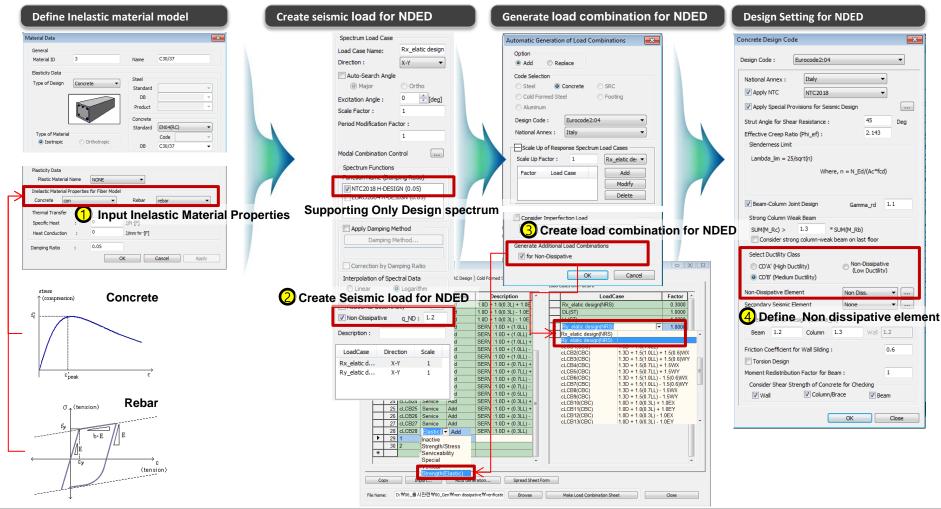
Buildings subject to seismic action, not equipped with appropriate insulation and / or dissipative devices, must be designed in accordance with one of the following structural behaviors:


- a) non dissipative structural behavior, or
- b) dissipative structural behavior.

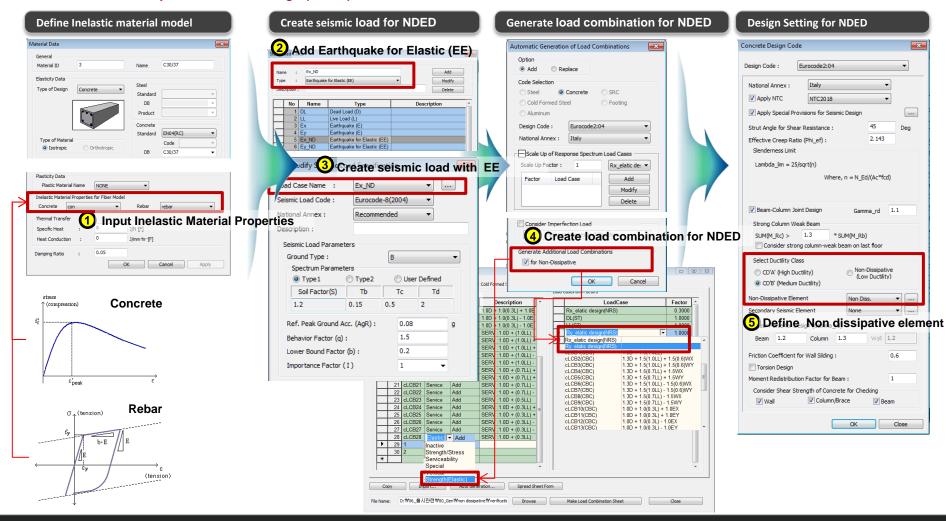
NTC18 7.4.1.

In the case of non-dissipative structural behavior, the capacity of the members must be evaluated in accordance with the rules set out in § 4.1, without any additional requirements, provided that in no section does the maximum moment of resistance in a substantially elastic field be exceeded, as defined in § 4.1.2.3.4.2. For beam-column Joint of structures with non-dissipative behavior, the design rules relating to CD "B" contained in § 7.4.4.3 must be applied. For prefabricated structures with non-dissipative behavior, the general rules contained in § 7.4.5 must also be applied.

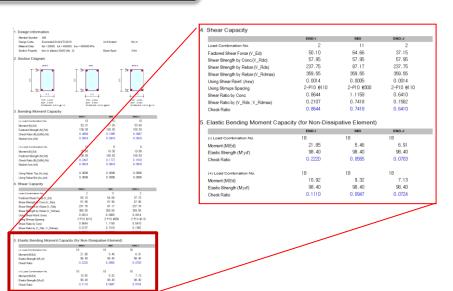
Flowchart of Non-dissipative Elements Design

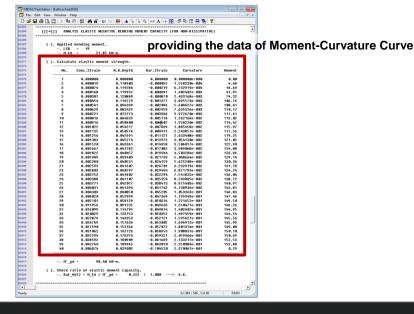


^{**} This release version is supporting only a beam, columnn and wall member in code checking


Procedure of Non-Dissipative Element Design (NDED) – Response Spectrum

Procedure of Non-Dissipative Element Design (NDED) - Static Seismic Load




Design Result of Non--Dissipative Element Design (NDED): Supporting only Design Checking

Graphic Report

Detail Report

9. 優化NTC 2018規範之穩定係數表格

About NTC18 chap. 7.3.1 – (this is to consider in wishlist)

Effetti delle non linearità geometriche

Le non linearità geometriche sono prese in conto attraverso il fattore θ che, in assenza di più accurate determinazioni, può essere definito come:

$$\theta = \frac{P \cdot d_{Er}}{V \cdot h}$$
 [7.3.3]

dove:

P è il carico verticale totale dovuto all'orizzontamento in esame e alla struttura ad esso sovrastante;

d_{ER} è lo spostamento orizzontale medio d'interpiano allo SLV, ottenuto come differenza tra lo spostamento orizzontale dell'orizzontamento considerato e lo spostamento orizzontale dell'orizzontamento immediatamente sottostante, entrambi valutati come indicato al § 7.3.3.3;

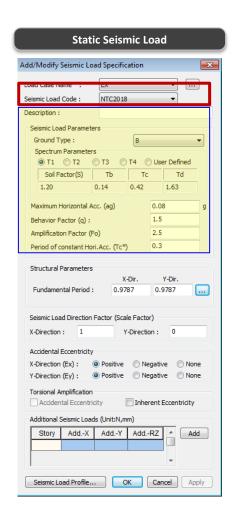
V è la forza orizzontale totale in corrispondenza dell'orizzontamento in esame, derivante dall'analisi lineare con fattore di

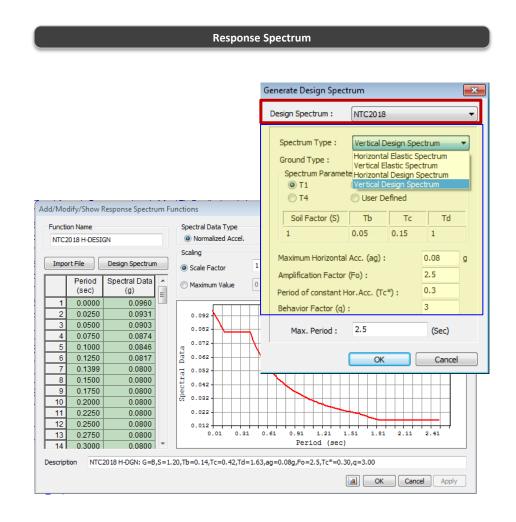
h è la distanza tra l'orizzontamento in esame e quello immediatamente sottostante.

Gli effetti delle non linearità geometriche:

- possono essere trascurati, quando θ è minore di 0,1;
- possono essere presi in conto incrementando gli effetti dell'azione sismica orizzontale di un fattore pari a 1/(1-θ), quando θ
 è compreso tra 0,1 e 0,2;
- devono essere valutati attraverso un'analisi non lineare, quando θ è compreso tra 0,2 e 0,3.

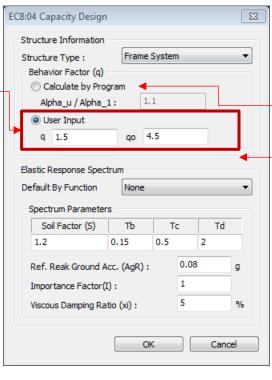
Il fattore θ non può comunque superare il valore 0,3.


					Modified Story		Stability			P-Delta Incremental
Load Case	Story	Story Height (m)	Vertical Load (kN)	Story Shear Force (kN)	Drift (m)	Beta (Beta)	Coefficient (Theta)	Allowable Limit		Factor (ad)
Cd=1, le=1,	Scale Factor=	. ,	, ,	,,	,	(===,	,			, ,
SLVx(RS)	5F	3.2	26503.4572	646.7074	0.0186	1	0.2384	0.3	P-Delta Direct Analysis	
SLVx(RS)	4F	3.2	43667.3343	994.4165	0.0208	1	0.2859	0.3	P-Delta Direct Analysis	
SLVx(RS)	3F	3.2	60831.2115	1267.5691	0.0202	1	0.3257	0.3	Redesign	
SLVx(RS)	2F	13.2	88294.3753	1658.6257	0.0521	1	0.1802	0.3	P-Delta Increment	1.2662
SLVx(RS)	1F	3.2	105458.2525	1690.8036	0.003	1	0.0583	0.3	OK	1


- If "Theta" is less than 0.1, "O.K" is printed
- If "Theta" exceeds 0.1 and is less than 0.2, "P-Delta Increment" is printed
- If "Theta" exceeds 0.2 and is less than 0.3, "P-Delta Direct Analysis" is printed
- If "Theta" exceeds 0.3, "Redesign" is printed

10. 新增NTC 2018規範之靜態地震力與反應譜





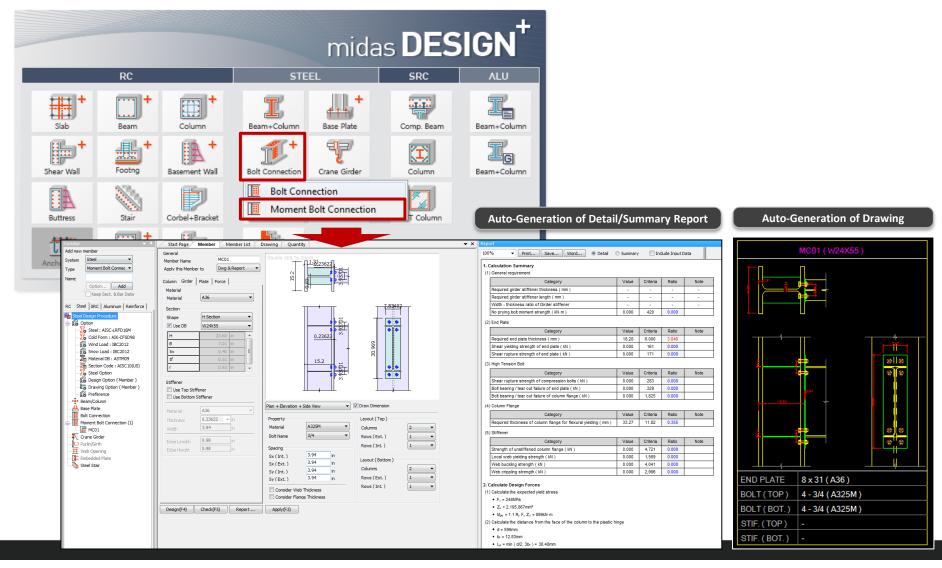
11. 新增EC2規範之RC設計的 "qo" 參數

- Definition of "qo" by user
- Design considering "qo" for irregular structures

Eurocod 08. Table 5.1

$$q = q_0 k_w \ge 1.5$$

Table 5.1: Basic value of the behaviour factor, q_0 fo	for systems regular in elevat			
STRUCTURAL TYPE	DCM	DCH		
Frame system, dual system, coupled wall system	3,0α ₀ /α ₁	4,5 α ₆ /α ₁		
Uncoupled wall system	3,0	4,0 α₀/α₁		
Torsionally flexible system	2,0	3,0		
Inverted pendulum system	1,5	2,0		


(3) For buildings which are not regular in elevation, the value of q_o should be reduced by 20% (see **4.2.3.1(7)** and Table 4.1).

midas Design+

1. 新增AISC規範之螺栓彎矩接合設計檢核功能

Supporting AISC-URFD05(M) / AISC-URFD10(M) / AISC-URFD16(M)

